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Magnetic Resonance Force Microscopy and the Solid State Quantum Computer
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Los Alamos National Laboratory, Los Alamos NM 87545
(January 11, 2002)

A Quantum Computer (QC) is a device that utilizes
the principles of Quantum Mechanics to perform compu-
tations. Such a machine would be capable of accomplishing
tasks not achievable by means of any conventional digital
computer, for instance factoring large numbers. Currently
it appears that the QC architecture based on an array of
spin quantum bits (qubits) embedded in a solid-state ma-
trix is one of the most promising approaches to fabrica-
tion of a scalable QC. However, the fabrication and opera-
tion of a Solid State Quantum Computer (SSQC) presents
very formidable challenges; primary amongst these are: (1)
the characterization and control of the fabrication process
of the device during its construction and (2) the readout
of the computational result. Magnetic Resonance Force
Microscopy (MRFM)—a novel scanning probe technique
based on mechanical detection of magnetic resonance—
provides an attractive means of addressing these require-
ments. The sensitivity of the MRFM significantly ex-
ceeds that of conventional magnetic resonance measure-
ment methods, and it has the potential for single electron
spin detection. Moreover, the MRFM is capable of true
3D subsurface imaging. These features will make MRFM
an invaluable tool for the implementation of a spin-based
QC. Here we present the general principles of MRFM op-
eration, the current status of its development and indicate
future directions for its improvement.

I. INTRODUCTION

The last several decades have seen outstanding
progress in development of conventional digital com-
puting. A remarkable increase in processing power has
been accompanied by parallel reduction in the size of
the transistors used in contemporary processors. How-
ever, in spite of these advancements, there are signifi-
cant tasks that cannot be easily performed due to the
inherent binary/linear method of calculations used in
contemporary computers; an example is factoring large
numbers. This is a problem of great interest for infor-
mation security and cryptography. For instance, it
would take the fastest existing supercomputer billions
of years to factor a 400 digit number [1], thus render-
ing any encryption code based factoring large numbers
“unbreakable”. Another problem that cannot be suc-
cessfully solved by a conventional computer is mod-

eling large quantum-mechanical systems. This prob-
lem is extremely interesting from the scientific point
of view for understanding the fundamental principles
of nature which in turn will lead to the development
of materials with new properties and functionalities.
Because the number of variables needed to describe a
quantum mechanical system grows exponentially with
its size, the ability to model large quantum mechanical
systems using conventional computers is very limited.
Fortunately, there is an approach alternative to the
binary computational mechanism employed in the ex-
isting computers. This method utilizes the principles
of quantum mechanics to perform computations. A
computing device based on such a method is called a
Quantum Computer (QC). In such a computer, con-
ventional bits are replaced with two level quantum sys-
tems, so-called quantum bits or qubits. Unlike a con-
ventional bit, which can only assume one of its base
values 0 and 1 at a time, a two level qubit with base
states |0) and |1) can exist in a superposition of these
base states with two complex coefficients describing
the relative probability and phase of each of the base
states. Thus, in order to describe an N qubit quan-
tum system, one would need 2"V parameters (compared
to N parameters in the case of a classical system).
This intrinsic feature of a quantum computer allows
performance of massively parallel computations on a
single computer. A QC opens new avenues in infor-
mation processing unavailable to conventional com-
puters. However, exploiting this massive parallelism
is a significant challenge, and this approach does not
lend itself to application to arbitrary computational
problems. The invention by P.W. Shor [2,3] of an
algorithm for factoring large numbers using a quan-
tum computer was an important breakthrough that
demonstrated the importance of the QC for the future
of information processing. He demonstrated that with
such a machine this task can be completed within a
manageable time thus potentially making it possible
to decode otherwise “unbreakable” codes. There have
also been very promising developments in the field of
modeling quantum mechanical systems. Recently, G.
Ortiz et al., demonstrated an approach to simulation
of fermionic systems on a quantum computer [4].
However, a practical quantum computer has yet to
be developed. There are several major difficulties to



be overcome in order to build a QC. An issue of central
importance is that of decoherence in quantum systems.
The delicate phase relationships between the qubits
existing in quantum superpositional states must be
maintained over the time span required to complete
a computation in order for it to function; to achieve
this the qubits must be effectively isolated from the
environment of the computer. Uncontrolled external
influence will cause the superposition to decohere lead-
ing to collapse of the states, thus rendering compu-
tation impossible. Because of the fragility of these
states, decoherence imposes a strong constraint on the
development of a QC. Nevertheless several approaches
to quantum computation that incorporate acceptably
slow decoherence processes have been proposed, and
there have been notable successes in demonstrating
the quantum manipulations that will be essential for
a quantum computer using, e.g., trapped ions [5,6].
However, to be useful for problems such as factoriza-
tion, a quantum computer design must be intrinsically
scalable up to very large numbers of qubits; solid state
implementations are very attractive from this point of
view.
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FIG. 1. Schematic diagram of the Solid State Quantum
Computer [7]. a) A buried array of qubits (phosphorus
atoms) with registered metallic control gates. Potential
problems in a fabricated device might include b) misaligned
gates, and c) unintentional defects.

A very promising design for a scalable quantum
computer was proposed by B.E. Kane in 1998 [7]. This
design is based on using the nuclear spins of phospho-
rus atoms embedded in a silicon matrix as the qubits

whose states are defined by the two quantum states
of the nuclear spin. As shown in Fig. 1, these atoms
will be fabricated with atomic precision into an array
buried at a depth of approximately 100-200 A beneath
the surface and with a well-controlled separation of
approximately 200 A between the atoms. Interactions
between the qubits will be mediated by the electrons
bound to the phosphorus atoms at the low tempera-
tures at which the computer will operate. A second
essential feature of the architecture is placement of
control gates on the surface of the silicon; their lo-
cation must be precisely registered to the underlying
phosphorus qubit array. Controlled electrostatic po-
tentials on metallic control gates will enable control of
single and multi-qubit operations when applied in con-
junction with conventional NMR techniques (Fig. 1a).

Clearly, fabrication of such a device is an extremely
challenging task. The atoms must be precisely located
in an ordered array with a pattern of metallic gates
indexed relative to the array with atomic-scale pre-
cision. Any error in this process will result in gate
misalignment (Fig. 1b). The SSQC will be fabricated
out of ultra pure materials with a low density of de-
fects, since any unwanted perturbation, such as an ex-
tra phosphorus atom or defects in the silicon crystal
lattice (Fig. 1c) in the vicinity of a qubit can render the
device useless for quantum computation. This makes
clear that successful fabrication of a solid state quan-
tum computer (SSQC) will require a characterization
instrument that is capable of very high resolution sub-
surface imaging of both qubits and defects.

Once the SSQC has been created the process of its
operation is equally challenging. One of the challenges
is the readout of the result of a calculation. Although
the quantum calculation is performed on a nuclear spin
of a phosphorus atom, as a consequence of the hy-
perfine interaction between the nuclear spin and the
bound electron, the result of the calculation can be
read out via detection of a spin state of the bound
electron. Read-out mechanisms exploiting the cou-
pling between the spin and orbital wavefunction of the
electronic have led to proposals for electron spin read-
out using single electron devices [7,8], however, it will
be essential to have direct spin probes to complement
these charge based techniques.

II. MAGNETIC RESONANCE FORCE
MICROSCOPY AS A TOOL FOR QUANTUM
COMPUTING

The drive to improve the sensitivity of magnetic res-
onance measurements have led to a variety of inventive



approaches. All of them involve development of detec-
tion techniques alternative to the conventional induc-
tive method, including optical [9-11] and SQUID de-
tection [12]. Another approach has been proposed by
J.A. Sidles [13,14] who introduced the concept of the
Magnetic Resonance Force Microscope (MRFM). This
is a novel scanning probe method based on mechani-
cal detection of magnetic resonance. This method is
much more sensitive than the conventional methods
of detection. It appears that its ultimate limit is de-
tection of the signal from a single electron spin. The
MRFM is a hybrid of the Atomic Force Microscope
(AFM) and Magnetic Resonance Imaging (MRI) and
thus is capable of fully three dimensional (3D) subsur-
face imaging [15,14]. Its potential single electron spin
sensitivity combined with the subsurface imaging ca-
pability makes MRFM exceptionally well situated to
provide both characterization of the QC during its fab-
rication and serve as a readout mechanism during its
operation.

III. MAGNETIC RESONANCE FORCE
MICROSCOPY: GENERAL PRINCIPLES

The method is based on coupling of a sample mag-
netic moment m to a probe magnet via the force of
magnetic interaction:

F(z,t) = =[m(z,1) - V| Bprobe() (1)

The strength of this interaction is proportional to
the gradient of the inhomogeneous magnetic field of
the probe magnet, which can be made very high. This
force of interaction is measured through detection of
the displacement of a compliant micro-mechanical res-
onator that is deflected by the applied force. The sen-
sitivity of this approach is ultimately limited by the
thermomechanical noise of the resonator. If the mag-
netic moments under study are manipulated at the res-
onant frequency of the mechanical resonator, its dis-
placement is magnified by the quality factor @ of the
resonator, which can be as high as 10°, compared to
the displacement resulting from a DC force of the same
magnitude. The combination of high magnetic field
gradients from microscopic magnetic probes and high
quality factors makes detection of a single electron spin
resonance theoretically possible. Because spatial reso-
lution is limited by the ability to detect the signal from
a the volume element to be imaged this high sensitiv-
ity holds the key to obtaining extremely high spatial
resolution.

FIG. 2. Schematic diagram of the geometry of an
MRFM. The micromagnet on the mechanical resonator
produces an extremely inhomogeneous magnetic field that
serves two purposes: (i) It couples the mechanical res-
onator to the magnetic moments in the sample, and (ii)
it defines the spatial regions of the sample where the mag-
netic resonance condition is met. Magnetic resonance tech-
niques can be employed to manipulate the magnetization
m thus generating a force on the mechanical resonator at
its resonance frequency that will drive it into oscillation.

The general concept of the method allows two ma-
jor MRFM architectures. One places the sample on
the mechanical resonator which is then coupled to an
external probe magnet. This approach allows use of
a relatively large probe magnet with well known mag-
netic properties. However the requirement that sam-
ples be placed on the resonator severely limits the ap-
plicability and usefulness of microscope based on this
design. The approach we are currently pursuing in our
research involves a micromagnetic probe mounted di-
rectly on the mechanical resonator brought in the close
vicinity of the sample. This will allow true scanning
operation on a sample of arbitrary size, however the
fabrication of a micromagnet with well known mag-
netic properties is more challenging. For this reason
accurate mapping of the magnetic field of a probe mi-
cromagnet is very important for the development of
the MRFM.

Scanning mode magnetic resonance force mi-
croscopy has several significant advantages over con-
ventional scanning probe techniques. These techniques
usually provide information limited to the surface of
a sample and cannot unequivocally identify chemical
elements on this surface. On the contrary, the nonuni-
form magnetic field of the probe magnet gives the
MRFM a unique ability to select a subsurface slice
of a sample for study; it is only in this region defined
by the externally applied rf field, that the magnetic
resonance condition is satisfied. Moreover, magnetic
resonance delivers material specific information thus



enabling MRFM to study chemical content of various
substances. All these features make the MRFM a po-
tentially extremely powerful subsurface characteriza-
tion tool which can find a wide application in various
fields of science and technology.

Reliable interpretation of MRFM signals is requires
thorough and detailed understanding of the interac-
tion between the micromagnetic probe and the sample.
Here we address this problem is some detail.

IV. THEORETICAL ANALYSIS

In order to perform both analytical and numerical
analysis we introduce a geometrical model represent-
ing a typical scanning MRFM geometry (Fig. 2). The
probe magnet, mounted on a mechanical resonator
with resonant frequency f. = w./2m, is modeled as
a sphere of a radius Rg uniformly magnetized along
the direction of the external magnetic field By. The
sample magnetization m = {0,0,m,} is assumed to
be uniform throughout the volume of the sample. The
in-plane components of magnetization are ignored be-
cause they presses at frequency wy > w.. The res-
onator can oscillate only along Z direction, therefore
the important component of the total force of probe-
sample interaction is given by

F,=—e,- /dgx [m(x) - V|Biot(x), (2)

where Biot(€) = Bprobe(®) + Bo. To further sim-
plify calculations the high-field approximation |Bg| >
| Bprobe ()| is used, hence Byt (7)||e..

Various rf-modulation techniques are used to ma-
nipulate the magnetic moments in the sample to cre-
ate an alternating force on the mechanical magnetic
resonance detector. The simplest modulation method
is amplitude modulation (AM) of the rf power at the
resonant frequency of the mechanical resonator. To
simplify the evaluation of the change in magnetiza-
tion of the sample under the influence of rf radiation
we assume that the spin-lattice relaxation time 77 of
the sample material is much shorter than the oscilla-
tion period of the mechanical resonator. Under this
assumption the spins in the sample are always in dy-
namical equilibrium.

Amplitude modulation generates a time dependent
magnetization of the sample with a strong Fourier
component at the resonance frequency of the mechan-
ical resonator with an amplitude given by

Fle = —e. . / Pz [dm(@) - VB (@), (3)

where dm(x) is the local change of sample magneti-
zation during a single cycle of rf - modulation.
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FIG. 3. Calculation of the sensitive slice shape (right
hand panels) and the force slice (left hand panels) for
different values of the external field By. For all panels
wre/y = 10000 Gauss. The force slice is weighted by the
volume element. The purple line on the left (force slices)
marks the angle at which the local force changes sign (see
also Fig. 2). a) (Bo = 9985 Gauss) show typical sensitive
slices as shells of constant field for yBy < wys. b) shows the
situation for yBy = wrs. Since the gradient is very small
in the regions where the resonance condition is met the
ratio of the line width to the gradient is very large, hence
a large volume of sample meets the resonance condition.
The conventional concept of a typical length scale set by
the width z« of the sensitive slice (zs & 0 Biinewidtn/V B)
breaks down in this case. c¢) yBo > wy (Bo = 10005
Gauss). Here the shape of the sensitive slice is approxi-
mately toroidal.

Analytical integration of Eq. 3 for a general experi-
mental MRFM geometry is quite complicated, however
we have done this for a few symmetric limiting cases,
and these prove to be valuable guides for understand-
ing this interaction [16]. However, due to the limit-
ing nature of these analytical solutions, quantitative
comparisons with experiment can be achieved only by
numerical integration of Eq. 3. The main advantage of
this approach is that the analysis of an arbitrary probe
sample geometry is possible, and more realistic models
of the probe micromagnet can be implemented. The
detailed description of both analytical and numerical
approaches is given in [16].
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FIG. 4. Numerically calculated MRFM signal vs. exter-
nal magnetic field calculated for various sample-probe sep-
arations a measured in units of the radius of the probe mag-
net Rg. This calculation was performed for a semi-infinite
bulk sample assuming that the resonant field in the absence
of the probe magnet is 10000 Gauss. The inset shows an
expanded view of the main peak of the resonance.

The result of the numerical analysis of the probe
sample interaction is presented in Fig. 3. This shows
the evolution of the sensitive slice and of the force
slice under typical experimental conditions that in-
clude continuous sweep of the external magnetic field
By as the frequency of the rf field wys is kept constant.
The term “sensitive slice” refers to the sample volume
in which magnetic moments interact resonantly with
the rf field: that is, the region where wys = vBiot ()
is satisfied. The right hand panel of Fig. 3 shows the
change in the sample spin magnetization due to sup-
pression by the rf field as a function of spatial po-
sition within the sample. The concept of the force
slice describes coupling of the magnetic moments in
the sample to the probe magnet on the mechanical
resonator. This is the volume of the sample that ac-
tually contributes to the alternating force driving the
mechanical resonator, that is, it is the volume where
the integrand of Eq. 3 is nonzero. The left hand panel
of Fig. 3 shows the local force contribution as a func-
tion of spatial position within the sample. Note that
the sign of the local force contribution is defined by the
sign of the appropriate component of the gradient of
magnetic field of the probe. Due to the dipolar nature
of the probe magnetic field this sign depends on the
position of the point of interest relative to the probe
magnet. The line on the left hand panel of Fig. 3

shows where this gradient turns passes through zero
and changes sign. Clearly, force contributions from
different parts of the sample can have opposite signs
Fig. 3a thus cancelling each other.

The model developed in Ref. [16] allows us to pre-
dict the evolution of the MRFM signal as experimental
parameters are changed. Fig. 4 shows the MRFM sig-
nal calculated for various probe sample separations. It
can be seen that, independent of the magnitude of the
probe-sample separation, each curve exhibits a strong
peak near the resonant field. However the leading edge
of the signal shifts to lower values of external magnetic
field as the probe is brought closer to the surface of the
sample. The offset of the leading edge of the signal
relative to the main peak is equal to the magnitude
of the probe magnetic field at the surface of the sam-
ple directly below the probe; this field increases as the
probe-sample separation is decreased.

The main peak of the sample corresponds to the
condition when the majority of the sample is resonant
and the concept of a well defined sensitive slice has
broken down Fig. 3c. The region of interest for the
MRFM operating as a high spatial resolution subsur-
face imaging tool is near the leading edge of the signal
where the sensitive slice is well defined and the number
of spins contributing to the signal, and thus the signal
itself, is small.
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FIG. 5. The electron spin resonance signal from a 100
nm DPPH film at various probe-sample separations de-
tected using frequency modulation of the rf field at T'= 4
K. Arrows mark the position of the peak corresponding to
the leading edge of the signal. The inset shows the leading
edge signal detected at 2.1 pm probe-sample separation. It
can be seen that the signal-to-noise ratio is not limited by
the thermo-mechanical noise of the mechanical resonator.



V. EXPERIMENTAL RESULTS

We have experimentally studied the evolution of the
leading edge of MRFM signal. For this the Electron
Spin Resonance (ESR) signal from a 100 nm thick
DPPH film was used. Because amplitude modulation
of the applied microwave radiation creates undesir-
able excitation of the mechanical resonator complicat-
ing detection of weak signals we chose to perform our
experiments using frequency modulation (FM). The
power of the rf radiation was kept constant as its
frequency was modulated at f.. This reduces the cou-
pling of rf field to the resonator, however FM changes
the shape of MRFM signal; instead a derivative of the
AM signal is detected. In this case the leading edge of
the signal appears as a peak that shifts its position as
the probe is moved toward the sample.
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FIG. 6. Magnetic field of the probe magnet vs. the dis-
tance from its tip. The solid curve presents the result of the
micromagnetic simulations of the expected magnetic field
of the probe magnet used in the experiment. The solid
squares are experimentally measured values of the field of
the probe magnet.

Fig. 5 shows several MRFM signals recorded at var-
ious probe-sample separations and demonstrates the
behavior predicted by the model. All the curves ex-
hibit a large probe position independent signal at the
resonant field (where the probe field is zero) and a
much smaller leading edge feature corresponding the
sensitive slice entering the sample. The latter shifts
to lower values of the external magnetic field as the
probe approaches the sample surface. As it has been
mentioned above, the relative position of this feature
is a direct measure of the magnetic field of the probe
magnet at the sample surface;this feature provides a

means of experimentally measuring the probe field.
The filled squares in Fig. 6 show the decrease of the
field of the probe magnet with increasing separation
from the probe. The solid curve presents the results of
micromagnetic simulations of magnetic field of a mi-
cromagnet with the same parameters as those of the
probe magnet used in the experiment. The experimen-
tal data is in excellent agreement with the theoretical
curve.

Precise understanding of the field of a particular
probe magnet enables us, using the model of probe-
sample interaction described above, to predict the
shape of the sensitive slice for a scanning probe-
sample geometry. This ability is extremely important
for development of a subsurface 3D MRFM imaging
technique similar to conventional Magnetic Resonance
Imaging (MRI). In practice this method will be based
on a data processing technique which extracts 3D im-
age from a collection of intersecting subsurface sensi-
tive slices obtained at various spatial probe positions
and values of external magnetic field. Precise knowl-
edge of the field profile of the probe magnet will be
crucial input for such a technique.

Knowledge of the of the field of the probe magnet
has also enabled us to estimate the number of spins
contributing to the measured signal at various values
of external magnetic field and probe sample separa-
tion. The leading edge feature observed at a probe-
sample separation of 2.1 um corresponds to a signal
from approximately 10* fully polarized electron spins.
As can be seen in the inset to Fig. 5 the force sensitiv-
ity of our apparatus is not yet limited by the thermo-
mechanical noise of the cantilever, which is estimated
to set our detection limit at approximately 10 fully
polarized electron spins. Therefore, improvements in
noise-rejection techniques are expected to improve the
sensitivity of our microscope by an order of magnitude
in the near future.

VI. IMAGE DECONVOLUTION

The detailed understanding of the probe-sample in-
teraction described in the previous sections enables us
to proceed toward the development of special imaging
techniques that will unable subsurface imaging of sin-
gle electron qubits with MRFM. The pioneering steps
in this direction were made by O. Ziiger and D. Rugar
who successfully demonstrated mapping of the sensi-
tive slice from a large magnet using ESR measure-
ments on a sample much smaller than the gradient
magnet [17]. Subsequently, O. Ziiger, et al., demon-



strated MRFM imaging of the nuclear spin density in
a ~ 10um irregularly-shaped particle [18].

However, as our analysis of probe-sample interac-
tion shows, any attempt at subsurface inhomogeneous
spin density imaging in sample with characteristic di-
mensions much larger than those of the probe mag-
net will be complicated by the position dependence of
the probe-sample interaction forces originating from
the dipolar nature of the magnetic field of the probe
magnet. The situation will be complicated even fur-
ther by the presence of two or more spin species with
relatively close but still different gyromagnetic ratios,
which means there will be several sensitive slices in the
sample. It is clear that the detailed analysis of image
deconvolution from MRFM data has yet to be done.
In this section we will outline our directions for de-
veloping subsurface single spin imaging for quantum
computing.

In general, the problem of extraction of the spin den-
sity profile from the signal measured by a cantilever is
related to the image deconvolution problems encoun-
tered in MRI and digital image processing. As such,
it can be addressed using the similar techniques and
algorithms.

In the most general case, the AC signal, F(r), mea-
sured by the cantilever, which can be the amplitude,
frequency or phase shift of the mechanical oscillation,
is given by the integral over the spin density, m(r’),

F(r):/f(nr’)m(r’)dr’. (4)

Here, the kernel f(r,r’) is related to the specific form
of the magnetic field gradient generated by the tip,
the form of the sensitive slice, effects of the sample
boundaries on the cantilever (e.g., modification of the
Q-factor), external magnetic and rf/microwave field
inhomogeneities. Such a form for the signal implies
that the scanning over real space r is performed while
keeping the external experimental parameters, exter-
nal magnetic field and rf or microwave frequency con-
stant. Depending on a particular technique, the vector
nature of the magnetization m(r) can be either unim-
portant (if the probe tip field is weaker than the exter-
nal field), or important (zero external field). The two
cases are conceptually similar and hence we will focus
here on the scalar case.

Eq. 4 is the Fredholm integral equation of the first
kind, which is notoriously ill-conditioned. Even small
error in the measurement of the cantilever response
F(r) can cause a large change in the deduced spin
density m(r). This is easy to understand since inte-
gration is a smoothing operation and any integrable

local singularity in m can cause only a small change in
F'. To tackle such problems, one has to make assump-
tions about the properties of the function m. For-
mally, this is achieved by filtering or regularization
techniques. The most common implicit assumption
is that the function m(r) be smooth. This is a valid
approximation if only coarse-grained polarization den-
sities are of interest, however, hardly adequate for the
single spin detection case. As a practical issue, the
highest achievable spatial resolution under any circum-
stances is given by the spatial resolution of the scan-
ning probe, however, measurement noise may further
reduce it. Probing the polarization distribution with
single spin resolution is therefore a hard problem since
the individual spin distribution is inherently point-like.
Moreover, it is not the sensitive slice that is imaging
the spin distribution, but rather individual spins imag-
ing the sensitive slice.

There are two main techniques that can be applied
to deduce the spin density from the measured signal,
which should be applicable both in the smooth and the
single-spin cases. These are: (a) Fourier transform-
based deconvolution with filtering, and (b) regularized
numerical solution of Eq. (4). The deconvolution tech-
nique is relatively fast, but is only applicable for homo-
geneous kernels, f(r,r') = f(r — '), which is the case
when the spurious effects of sample boundaries and
other inhomogeneities are either negligible, or can be
removed. The direct solution technique is more gen-
eral, but computationally intensive and also requires
assumptions about the properties of the solution.

A. Fourier deconvolution

In the special case when the kernel of Eq. 4 is ho-
mogeneous,

F() = [ £ 6 (5)

the magnetic polarization m(r) can be obtained using
the Fourier deconvolution technique. Formally,

W)= ©)
m(r) = [ e*m(k). (7)

In reality however, directly applying the deconvolu-
tion technique to the noisy data F' is likely to amplify
the noise in m, particularly at short wave lengths, since
the instrument function f vanishes for large enough k



(greater than the inverse width of the sensitive slice).
To avoid this problem, heuristically, one may introduce
the cutoff in the denominator, that will effectively sup-
press the short-wave length noise, but also at the same
time limit the spatial resolution [18]:

(k) = 2L 5 (8)

where f* is the complex conjugate of f, and C' is a
positive constant that is related to the noise.
Alternatively, the optimal (Wiener) filter [19] can be
applied,
Pk

R (NP
w0 =70 (1= TFage) ©)

The Wiener filter implies knowledge of the measure-
ment noise power spectrum, |N(k)|?, the noise in the
measurement of F'(r). It is optimal in the sense of
the m(r) error-squared integrated over the volume of
the sample. The main challenge in applying the op-
timal filter is in determining the noise spectrum. We
will approach this problem by fitting and modeling the
experimentally measured spectrum of F'(r).
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FIG. 7. An example of numerical image deconvolution
using a 3D Fast Fourier Transform. a) A 2D slice through
the 3D spin distribution pattern input into the numerical
experiment. b)A 2D slice through the recovered 3D image
of the original spin distribution.

Computationally, the deconvolution technique is
best implemented using the multidimensional Fast
Fourier Transforms (FFT). Fig. 7 demonstrates ap-
plication of the 3D FFT to a set of data obtained
from numerical simulation of interaction of spherical

MRFM probe magnet with a point 3D spin distribu-
tion buried in a zero spin substance. The geometry of
the simulation has been described earlier in the paper.
It can be seen in Fig. 7b, that the recovered image
of the spin distribution is in good agreement with the
original data.

B. Discretized solution of the signal Integral
equation

In some cases, the homogeneity approximation
needed to apply the Fourier deconvolution techniques
is not valid, for instance when the translational sym-
metry of the kernel f is broken due to the surface ef-
fects or inhomogeneity of the external magnetic field or
rf/microwave radiation. In this case, the kernel can-
not be reduced to the homogeneous form, and other
numerical techniques for the solution of the integral
Eq. 4 have to be applied.

Assume that the MRFM signal has been measured
on a 3D grid, F;, and the signal is related to the mag-
netization on the same or some other related grid, m;.
To find the magnetization one needs to solve the sys-
tem of linear equations,

Zfijmj = Fi, (10)

which is simply a discretized form of the original in-
tegral Eq. 4. While it is relatively straightforward to
solve such a system of equations for matrix dimensions
up to a few thousand, the problem is that the matrix
fij is likely to be ill-conditioned and hence the solution
may have little if anything to do with the actual spin
distribution. To rectify this problem, various regular-
ization techniques are often used. All of them rely on
procedures for minimization of a functional that can
be tuned to incorporate the expected properties of the
actual underlying function m(r), such as smoothness,
stability, or likelihood. An example of such functional
that favors smooth functions is

Z(.Fz — Zfijm]‘)Q + )\ZHijmimj, (11)

%

where H;; is a positive semidefinite matrix that has a
zero eigenvalue that corresponds to constant m; [19].
By tuning the parameter A, from 0 to infinity, one
can manage the trade-off between the agreement with
the measured data and the expected behavior of the
unknown function. Similarly, functionals can be con-
structed that reflect essentially any a prior: knowledge
of the spin distribution.



While computationally significantly more intensive
than the fast-Fourier transform deconvolution tech-
niques described in the previous subsection, the direct
regularized method represents a viable alternative for
the experimental situations when the extraneous ef-
fects make the application of the FFT-based methods
impossible. Where possible, the two described meth-
ods can be used for cross-check purposes.

VII. CONCLUSIONS

We have experimentally verified the validity of our
model describing the probe sample interaction in Mag-
netic Resonance Force Microscopy. This enables us
to characterize the sensitivity of our scanning probe
MRFM and provides the basis for development of data
deconvolution that will enable 3D subsurface imaging
of single electron qubits of a silicon-based quantum
computer using the MRFM.
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